All Summaries for DataFramed

Podcast Logo

Welcome to DataFramed, a weekly podcast exploring how artificial intelligence and data are changing the world around us. On this show, we invite data & AI leaders at the forefront of the data revolution to share their insights and experiences into how they lead the charge in this era of AI. Whether you're a beginner looking to gain insights into a career in data & AI, a practitioner needing to stay up-to-date on the latest tools and trends, or a leader looking to transform how your organization uses data & AI, there's something here for everyone. Join co-hosts Adel Nehme and Richie Cotton as they delve into the stories and ideas that are shaping the future of data. Subscribe to the show and tune in to the latest episode on the feed below.

#158 Building Human-Centered AI Experiences with Haris Butt, Head of Product Design at ClickUp
In today's AI landscape, organizations are actively exploring how to seamlessly embed AI into their products, systems, processes, and workflows. The success of ChatGPT stands as a testament to this. Its success is not solely due to the performance of the underlying model; a significant part of its appeal lies in its human-centered user experience, particularly its chat interface. Beyond the foundational skills, infrastructure, and tools, it's clear that great design is a crucial ingredient in building memorable AI experiences.How do you build human-centered AI experiences? What is the role of design in driving successful AI implementations? How can data leaders and practitioners adopt a design lens when building with AI?Here to answer these questions is Haris Butt, Head of Product Design at ClickUp. ClickUp is a project management tool that's been making a big bet on AI, and Haris plays a key role in shaping how AI is embedded within the platform.Throughout the episode, Adel & Haris spoke about the role of design in driving human-centered AI experiences, the iterative process of designing with large language models, how to design AI experiences that promote trust, how designing for AI differs from traditional software, whether good design will ultimately end up killing prompt engineering, and a lot more.
Mon, October 9, 2023
#157 Is AI an Existential Risk? With Trond Arne Undheim, Research Scholar in Global Systemic Risk at Stanford University
It's been almost a year since ChatGPT was released, mainstreaming AI into the collective consciousness in the process. Since that moment, we've seen a really spirited debate emerge within the data & AI communities, and really public discourse at large. The focal point of this debate is whether AI is or will lead to existential risk for the human species at large.We've seen thinkers such as Elizier Yudkowski, Yuval Noah Harari, and others sound the alarm bell on how AI is as dangerous, if not more dangerous than nuclear weapons. We've also seen AI researchers and business leaders sign petitions and lobby government for strict regulation on AI. On the flip side, we've also seen luminaries within the field such as Andrew Ng and Yan Lecun, calling for, and not against, the proliferation of open-source AI. So how do we maneuver this debate, and where does the risk spectrum actually lie with AI? More importantly, how can we contextualize the risk of AI with other systemic risks humankind faces? Such as climate change, risk of nuclear war, and so on and so forth? How can we regulate AI without falling into the trap of regulatory capture—where a select and mighty few benefit from regulation, drowning out the competition in the meantime?Trond Arne Undheim is a Research scholar in Global Systemic Risk, Innovation, and Policy at Stanford University, Venture Partner at Antler, and CEO and co-founder of Yegii, an insight network with experts and knowledge assets on disruption. He is a nonresident Fellow at the Atlantic Council with a portfolio in artificial intelligence, future of work, data ethics, emerging technologies, and entrepreneurship. He is a former director of MIT Startup Exchange and has helped launch over 50 startups. In a previous life, he was an MIT Sloan School of Management Senior Lecturer, WPP Oracle Executive, and EU National Expert.In this episode, Trond and Adel explore the multifaceted risks associated with AI, the cascading risks lens and the debate over the likelihood of runaway AI. Trond shares the role of governments and organizations in shaping AI's future, the need for both global and regional regulatory frameworks, as well as the importance of educating decision-makers on AI's complexities. Trond also shares his opinion on the contrasting philosophies behind open and closed-source AI technologies, the risk of regulatory capture, and more. Links mentioned in the show:Augmented Lean: A Human-Centric Framework for Managing Frontline Operations by Trond Arne Undheim & Natan LinderFuture Tech: How to Capture Value from Disruptive Industry Trends Trond Arne UndheimFuturized PodcastStanford Cascading Risk StudyCourse: AI Ethics
Mon, October 2, 2023
#156 Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision Scientist
From the dawn of humanity, decisions, both big and small, have shaped our trajectory. Decisions have built civilizations, forged alliances, and even charted the course of our very evolution. And now, as data & AI become more widespread, the potential upside for better decision making is massive. Yet, like any technology, the true value of data & AI is realized by how we wield it. We're often drawn to the allure of the latest tools and techniques, but it's crucial to remember that these tools are only as effective as the decisions we make with them. ChatGPT is only as good as the prompt you decide to feed it and what you decide to do with the output. A dashboard is only as good as the decisions that it influences. Even a data science team is only as effective as the value they deliver to the organization. So in this vast landscape of data and AI, how can we master the art of better decision making? How can we bridge data & AI with better decision intelligence?​​Cassie Kozyrkov founded the field of Decision Intelligence at Google where, until recently, she served as Chief Decision Scientist, advising leadership on decision process, AI strategy, and building data-driven organizations. Upon leaving Google, Cassie started her own company of which she is the CEO, Data Scientific. In almost 10 years at the company, Cassie personally trained over 20,000 Googlers in data-driven decision-making and AI and has helped over 500 projects implement decision intelligence best practices. Cassie also previously served in Google's Office of the CTO as Chief Data Scientist, and the rest of her 20 years of experience was split between consulting, data science, lecturing, and academia. Cassie is a top keynote speaker and a beloved personality in the data leadership community, followed by over half a million tech professionals. If you've ever went on a reading spree about AI, statistics, or decision-making, chances are you've encountered her writing, which has reached millions of readers. In the episode Cassie and Richie explore misconceptions around data science, stereotypes associated with being a data scientist, what the reality of working in data science is, advice for those starting their career in data science, and the challenges of being a data ‘jack-of-all-trades’. Cassie also shares what decision-science and decision intelligence are, what questions to ask future employers in any data science interview, the importance of collaboration between decision-makers and domain experts, the differences between data science models and their real-world implementations, the pros and cons of generative AI in data science, and much more. Links mentioned in the Show:Data scientist: The sexiest job of the 22nd centuryThe Netflix PrizeAI Products: Kitchen AnalogyType one, Two & Three Errors in StatisticsCourse: Data-Driven Decision Making for BusinessRadar: Data & AI Literacy...
Mon, September 25, 2023
#155 Building Diverse Data Teams with Tracy Daniels, Chief Data Officer at Truist
In data science, the push for unbiased machine learning models is evident. So much effort is made into ensuring the products we create are done thoughtfully and correctly, but are we investing the same effort in ensuring our teams, the very architects of these models, are diverse and inclusive? Bias in data can lead to skewed results, and similarly, a lack of diversity in teams can result in narrow perspectives. As we prioritize building diversity and inclusion into our data, it's equally crucial to embed these principles within our teams. So, who is best equipped to guide us in integrating DEI from a data perspective?Tracy Daniels is the Chief Data Officer for Truist Financial Corporation. She leads the team responsible for Truist’s enterprise data capabilities, including strategy, governance, data platform delivery, client, master & reference data, and the centers of excellence for business intelligence visualization and artificial intelligence & machine learning. She is alsothe executive sponsor for Truist’s Enterprise Technology & Operations Diversity Council. Daniels joined Truist in 2018. She has more than 25 years of banking and technology experience leading high performing technology portfolio, development, infrastructure and global operations organizations. Tracy enjoys participating in civic and philanthropic endeavors including serving on the Georgia State University Foundation Board of Trustees. She has been recognized as a National 2013 WOC STEM Rising Star award recipient, the 2017 Working Mother magazine Mother of the Year recipient, and a 2021 Women In Technology (WIT) Women of the Year in STEAM finalist.In the episode Tracy and Richie discuss Truist's approach to Diversity, Equity, and Inclusion (DEI) and its alignment with the company's purpose and values, the distinction between diversity and inclusion, the positive outcomes of implementing DEI correctly, the importance of not missing opportunities both externally with customers and internally with talent, the significance of aligning diversity programs with business metrics and hiring to promote DEI, considerations for job advertisements that appeal to a diverse audience, and much more. Links mentioned in the show:McKinsey on Diversity and InclusionBrookings Piece on Mitigating Bias in DataAlgorithmic Justice LeagueEuropean Legislation on Data and DiversityCourse: AI EthicsRadar: Data & AI Literacy Edition
Mon, September 18, 2023
#154 Building Ethical Machines with Reid Blackman, Founder & CEO at Virtue Consultants
It's been a year since ChatGPT burst onto the scene. It has given many of us a sense of the power and potential that LLMs hold in revolutionizing the global economy. But the power that generative AI brings also comes with inherent risks that need to be mitigated. For those working in AI, the task at hand is monumental: to chart a safe and ethical course for the deployment and use of artificial intelligence. This isn't just a challenge; it's potentially one of the most important collective efforts of this decade. The stakes are high, involving not just technical and business considerations, but ethical and societal ones as well. How do we ensure that AI systems are designed responsibly? How do we mitigate risks such as bias, privacy violations, and the potential for misuse? How do we assemble the right multidisciplinary mindset and expertise for addressing AI safety? Reid Blackman, Ph.D., is the author of “Ethical Machines” (Harvard Business Review Press), creator and host of the podcast “Ethical Machines,” and Founder and CEO of Virtue, a digital ethical risk consultancy. He is also an advisor to the Canadian government on their federal AI regulations, was a founding member of EY’s AI Advisory Board, and a Senior Advisor to the Deloitte AI Institute. His work, which includes advising and speaking to organizations including AWS, US Bank, the FBI, NASA, and the World Economic Forum, has been profiled by The Wall Street Journal, the BBC, and Forbes. His written work appears in The Harvard Business Review and The New York Times. Prior to founding Virtue, Reid was a professor of philosophy at Colgate University and UNC-Chapel Hill.In the episode, Reid and Richie discuss the dominant concerns in AI ethics, from biased AI and privacy violations to the challenges introduced by generative AI, such as manipulative agents and IP issues. They delve into the existential threats posed by AI, including shifts in the job market and disinformation. Reid also shares examples where unethical AI has led to AI projects being scrapped, the difficulty in mitigating bias, preemptive measures for ethical AI and much more. Links mentioned in the show:Ethical Machines by Reid BlackmanVirtue Ethics ConsultancyAmazon’s Scrapped AI Recruiting ToolNIST AI Risk Management FrameworkCourse: AI EthicsDataCamp Radar: Data & AI Literacy
Mon, September 11, 2023
#153 From Data Literacy to AI Literacy with Cindi Howson, Chief Data Strategy Officer at ThoughtSpot
For the past few years, we've seen the importance of data literacy and why organizations must invest in a data-driven culture, mindset, and skillset. However, as generative AI tools like ChatGPT have risen to prominence in the past year, AI literacy has never been more important. But how do we begin to approach AI literacy? Is it an extension of data literacy, a complement, or a new paradigm altogether? How should you get started on your AI literacy ambitions? Cindi Howson is the Chief Data Strategy Officer at ThoughtSpot and host of The Data Chief podcast. Cindi is a data analytics, AI, and BI thought leader and an expert with a flair for bridging business needs with technology. As Chief Data Strategy Officer at ThoughtSpot, she advises top clients on data strategy and best practices to become data-driven, speaks internationally on top trends such as AI ethics, and influences ThoughtSpot’s product strategy.Cindi was previously a Gartner Research Vice President, the lead author for the data and analytics maturity model and analytics and BI Magic Quadrant, and a popular keynote speaker. She introduced new research in data and AI for good, NLP/BI Search, and augmented analytics, bringing both BI bake-offs and innovation panels to Gartner globally. She’s frequently quoted in MIT, Harvard Business Review, and Information Week. She is rated a top 12 influencer in big data and analytics by Analytics Insight, Onalytca, Solutions Review, and Humans of Data.In the episode, Cindi and Adel discuss how generative AI accelerates an organization’s data literacy, how leaders can think beyond data literacy and start to think about AI literacy, the importance of responsible use of AI, how to best communicate the value of AI within your organization, what generative AI means for data teams, AI use-cases in the data space, the psychological barriers blocking AI adoption, and much more. Links Mentioned in the Show:The Data Chief Podcast ThoughtSpot Sage BloombergGPT Radar: Data & AI LiteracyCourse: AI Ethics Course: Generative AI ConceptsCourse: Implementing AI Solutions in Business 
Mon, September 4, 2023
Introducing Data & AI Literacy Month
With September and International Literacy Day (September 8th) upon us, we’re dedicating the entire month to cover the ins and outs of data & AI literacy. Make sure to sign up for the events we have in store, and to tune in for this month’s episodes.Data & AI Literacy MonthDataCamp Radar: Data & AI Literacy Edition
Fri, September 1, 2023
#152 How Data can Enable Effective Leadership with Dr. Constance Dierickx, The Decision Doctor
The mainstreaming of data & AI is fundamentally altering the way we work and operate. But with rising innovation, comes rising ambiguity and complexity. How can leaders effectively navigate the path ahead? How can leaders adopt data-driven decision-making and learn from their mistakes? How can leaders use data to look inward, and become what today’s guest describes as “meta-leaders”? Constance Dierickx is an internationally recognized expert in high-stakes decision-making who has advised leaders and delivered speeches in more than 20 countries. Founder and president of CD Consulting Group, her clients include Fortune 20 companies, private equity firms, and large not-for-profits around the globe. She is a contributor to Harvard Business Review, Forbes, Chief Executive, and others, and has taught strategic decision-making at Skolkovo Institute of Science and Technology in Moscow, Russia. In the episode, Richie and Constance delve into what meta-leadership is, the nuances of meta-leadership, the pivotal role of data in leadership, the importance of recognizing subtle behavioral cues, the implications of cognitive biases (particularly overconfidence), and the essence of wisdom in decision-making. Constance also shares insights from her clinical psychology background, highlighting the application of biofeedback mechanisms in managing chronic pain and much more. Links From the Show:Meta-Leadership by Constance DierickxHigh-Stakes Leadership by Constance DierickxThe Merger Mindset by Constance DierickxDesign the Life You Love: A Step-by-Step Guide to Building a Meaningful FutureBook by Ayse BirselIntroducing The State of Data Literacy Report 2023Data-Driven Decision Making for Business
Mon, August 28, 2023
#151 How Data Science Can Sustain Small Businesses with Kendra Vant, Executive GM Data & AI Products at Xero
Throughout history, small businesses have consistently played a pivotal role in the global economy, serving as its foundational backbone. As we navigate the digital age, the emergence of large corporations and rapid technological advancements present new challenges. Now, more than ever, it's imperative for small businesses to adapt, embracing a data-driven approach to remain competitive and sustainable. In this evolving landscape, we need champions dedicated to guiding these businesses, ensuring they harness the full potential of modern tools and insights to ensure a fair and varied marketplace of goods and services for all. Dr Kendra Vant, Executive General Manager of Data & AI Products at Xero, is an industry leader in building data-driven products that harness AI and machine learning to solve complex problems for the small-business economy. Working across Australia, Asia and the US, Kendra has led data and technology teams at companies such as Seek, Telstra, Deloitte and now Xero where she leads the company's global efforts using emerging practices and technologies to help small businesses and their advisors benefit from the power of data and insights. Starting with doctoral research in experimental quantum physics at MIT and a stint building quantum computers at Los Alamos National Laboratory, Kendra has made a career of solving hard problems and pushing the boundaries of what's possible.In the episode, Kendra and Richie delve into the transformative impact of data science on small businesses, use-cases of data science for small businesses, how Xero has supported numerous small businesses with data science. They also cover the integration of AI in product development, the unexpected depth of data in seemingly low-tech sectors, the pivotal role of software platforms in data analysis and much more. Links Mentioned in The Show:XeroAnalyzing Business Data in SQLFinancial Modeling in SpreadsheetsImplementing AI Solutions in BusinessGenerative AI Concepts
Mon, August 21, 2023
Made with ☕️ in SF/SD.
© 2023 Spyglass Search, Inc.